

The Backup system has been designed to be a
secure, reliable, efficient, scalable, modular, and
portable data backup solution. An overview of each
of the following components will be given: data
encryption, revision management, pass phrase
recovery, client/server protocol, data repository,
and account management.

Executive Summary
Each file is compressed and encrypted using the
AES-256 standard using a user-provided pass
phrase as the key. The encrypted information is
sent across an authenticated and secure (SSL/TLS)
Internet connection to the server, where it is stored
encrypted on the RAID-6 array.

Data Encryption
The information is encrypted by the client program
using the AES-256 symmetric encryption algorithm.
The 256-bit encryption key (as well as another 256-
bit HMAC key) is generated by running the PBKDF2
algorithm on the pass phrase as described in RFC
2898.

Each file is divided into 2K blocks. Each block is
compressed using zlib deflate and is encrypted
using AES-256 in CTR mode (each block uses a
different crypto-random nonce), and an HMAC
(using SHA-256) is appended (to guarantee
integrity upon restore). The data is fully
compressed and encrypted before it ever enters the
network. Encrypting the data on the client is more
secure, and it makes the server more efficient and
scalable.

Filenames are currently not encrypted. Encryption
of file and directory names is a planned future
enhancement, and can be done by upgrading the
client software – no changes need to be made by
the server.

Revision Management
The use of compression and encryption precludes
the possibility of performing file delta calculation at
the server. Performing the delta calculation at the
client also increases server scalability and
efficiency.

As each block is stored on the server the client
stores a 64-bit CRC (two 32-bit CRCs generated
from different polynomials) associated with that

block. During the next backup if a file has been
changed (its modified date/time stamp has changed
or its size has changed) then the client will compare
the new 64-bit CRC with the stored CRC. If the CRC
has changed the client will upload the new
compressed and encrypted block. Otherwise the
client will tell the server that block has not
changed.

The CRC block fingerprints and other data are
protected by transactions such that if the backup of
a file fails, all 64-bit CRCs and other information are
rolled back to the consistent state.

Pass Phrase Recovery
The pass phrase is central to the system’s security.
A strong pass phrase is vital for sufficient
encryption strength. However, a strong pass phrase
can be hard to remember, and all data would be
worthless without the exact pass phrase. Thus, a
secure pass phrase recovery system has been
implemented.

When a pass phrase is created or changed the user
answers several security questions. The answers to
the questions generate an encryption key, which is
used to encrypt the pass phrase. A new random
256-bit encryption key is generated, and the data is
encrypted again. The 256-bit encryption key is then
encrypted with a 3072-bit RSA public key. The
associated private key is encrypted and secured by
an extremely secure pass phrase only known to
master technicians.

Pass phrases are stored in this dually encrypted
fashion on the server. To recover a pass phrase the
client program generates a random 3072-bit RSA
key and sends the public key in the request file to
the server (ensuring only the client that generated
the recovery request can attempt to recover the
pass phrase).

A master technician decrypts the outer layer and
re-encrypts it with a new random symmetric key,
encrypting the new random symmetric key with the
public RSA key in the recover request. The client
program downloads the response and decrypts the
outer layer. The user must then correctly answer
the security questions, thus allowing the inner layer
to be decrypted and the plain text of the pass
phrase to be recovered.

Technology Whitepaper
Updated November 8, 2006

The pass phrase stored on the server is thus
secure, requiring the cooperation of both a master
technician and the end user. Only the end user ever
sees the recovered pass phrase.

Client/Server Protocol
Each end user is given an account username and
password (which can be changed). The client
connects to the server via a TLS (SSL) connection
(providing confidentiality and integrity), and
requires the server’s certificate to be issued by the
eSecure Repository root certificate authority (to
prevent spoofed servers from stealing login
credentials).

The client authenticates to the server with its
username and password. At this point the server
may redirect the user to a different server and port.
This greatly increases scalability, as all clients point
to the same login server, but can be redirected to
their data server according to need. Data servers
can be added on demand, and an account’s data
can be moved to larger servers as the account
grows. The end user is not aware of this complexity
and never needs to change anything.

The communication protocol itself is an endian-
independent, flexible protocol designed to support
changes without breaking backwards compatibility.

Data Repository
All data is stored as files within the server’s file
system. The server is portable and runs either in
Win32 or Linux. Servers currently run on SuSE 9.3
Linux using the ReiserFS 3.0 file system with the
tea hash function. ReiserFS is a modern journaling
file system supporting multi-terabyte partitions, 64-
bit file sizes, and millions of files per directory,
making it preferable over NTFS. RAID-6 is used for
all repository partitions.

Each account is assigned a subdirectory and
contains subdirectories for root backup folders.
Each root backup folder contains the following
subdirectories:

− data: Current versions of files
− meta: Historical versions of files
− deldata: Deleted versions of files
− delmeta: Deleted, historical files
− index: mirrors the directory structure so the

directory list can be generated quickly

The current version of the file always stores the
complete file (encrypted and compressed).
Historical versions store data blocks that differ from
the next (more recent) version. Thus, to restore the
5th version of the file you apply the deltas from the
previous 4 versions and then apply the 5th delta.
This is done as the file is downloaded and is very
efficient. Also, this method makes uploading new

versions efficient, as all previous versions need not
be changed.

When the client detects that a file has been deleted
it notifies the server during the next backup. The
server annotates the filename with the deleted
date/time and moves it to the deleted data area.
The client program will enumerate and destroy old
deleted data once a week.

An end user can use the file manager to destroy
data. When data is destroyed it is moved to a
parallel repository designed to hold the “destroyed”
data. Destroyed data is held for an additional 30
days, in case the destruction of data was
unintentional.

All actions in the repository are transactional so
that the system is always in a consistent state. A
transaction log is kept on the disk such that if the
server ever loses power the transaction will be
rolled back upon server startup and the system will
be restored to a consistent state. Transactions are
also automatically rolled back if a network
connection times out or some other error occurs.

The repository uses “meta data” objects to track
disk usage. There is one meta data object per
directory, and it tracks how much data is contained
within that directory and all of its subdirectories.
These meta data objects are updated in real time in
a transactional manner. This allows the server to
provide disk usage information to the client
program (or billing process) in a very efficient
manner.

Because all repository data is stored as files within
the native file system, an account’s data can be
managed easily using the native operating system’s
utilities. Additionally, existing technologies and
utilities to mirror file systems (such as rsync) can
be used to provide additional protection against
data loss.

Account Management
All account information is stored in a PostgreSQL
database. The login server and the data server
must connect to the same database, or replication
must be employed to keep the databases
consistent. The database also contains billing
information and a detailed audit trail.

